

Urban Mobility Practices in Small, Medium and Large European Cities The Mediating Roles of Urban Form and Car Ownership

Peter Berrill, Aneeque Javaid, Nikola Milojevic-Dupont, Florian Nachtigall, Felix Wagner, Felix Creutzig

ETC 2023, Milan, 07.09.2023

- Addressing the link between residential location and travel demand/emissions
- Transport is only sector in Europe where emissions continue to grow.
 96% from road transport
- Emissions from urban mobility arguably easiest to mitigate, but cars still dominate urban travel
- Which *urban form* features contribute to (un)sustainable mobility outcomes, and do these influences differ by location?

Resolution & scope

Scope – 19 cities in FR, DE, AT, ES

Resolution – Postcode or similar. ~5km² mean area

- Urban form features
 - Accessibility to attractions (**D**istance to city center & local subcenters)
 - Accessibility to Transit (level of service and distance)
 - Density (population, built-up)
 - Diversity (land use mix)
 - Design of street networks (street length, street intersection density, bike lanes)
- Urban mobility surveys, dependent variables:
 - Car ownership (per household)
 - Trip distance (average by postcode, individual commute trips)
 - Mode choice (individual trips)

Research Questions

- 1. How do aggregate trends compare? (car use, ownership vs density, income, etc.)
- 2. Importance and variation of (urban form) features on:
 - Avg. trip distance by postcode
 - Commuting trip distance
 - Car ownership
 - Mode choice
- 3. How do demographic/trip characteristics influence mobility practices?

- Gradient Boosting Decision Tree classification/regression models
- Linear, logistic, multinomial logistic regression models
- SHAP values for explainable machine learning; interpret the black box

Car travel vs Population density

Car mode share vs Population density

Car ownership and mode share vs income

Model results: Urban form and trip distance

Model results: Urban form and trip distance

Model results: Distance to center and car ownership

Non-linear effect of distance to center on car ownership, with visible thresholds e.g. ~7 km in Berlin

Urban Mobility Practices in Small, Medium and Large European Cities | ETC 2023 Milan | P. Berrill et al.

berlin

Model results: Mode choice

Trip distance, age, and car ownership most influential •

Model results: Car mode choice

- Car ownership and trip distance most important for car mode choice
- Age, Distance to center, Companion trip purpose, Pop density also relevant

Non-linear effects of age on mode choice

Foot Bike 0.6 -0.5 0.4 0.0 -SHAP (mode Prob.) SHAP (mode Prob.) -0.50.2 -1.00.0 -15 - Berlin France, other -2.0 Germany, other -0.2 -2.5Madrid Paris -0.4 -3.0Vienna 20 80 20 40 60 40 60 80 Age Age Car Transit 0.75 0.8 0.50 0.6 -0.25 0.25 O.00 O.00 -0.25 -0.50 0.4 SHAP (mode Prob.) 0.2 -0.0 -0.2 -0.75 -0.4-1.00-0.6 20 80 20 40 60 40 60 80 0 Age Age

Change in probability of mode choice with Age

Non-linear effects of density on mode choice

Change in probability of mode choice with population density

Estimated range of threshold values

Findings summary

- 1. Income and density important for car ownership and use, also country and city size
- Distance to center is the most important urban form feature for all outcomes. Non-linear thresholds exist @ ~5-7km for car ownership and mode choice, ~10km for trip distance
- 3. Companion trips most car dependent. Female and older travellers less likely to bike.

Recommendations

1. Concentrate future urban growth close to center

2. Increase transit mode share for longer trips, by <u>increasing transit accessibility</u>, and locating growth close to transit stations with pop. density >75/ha

3. Targeted solutions to promote active travel, esp. biking, among less engaged groups.

Technische Universität Berlin

Thank you

Contact: peter.berrill@tu-berlin.de

Project website: https://peterberr.github.io/sufficcs/

Preprint: https://www.researchsquare.com/article/rs-2924076/v1

This project (SUFFICCS) has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101027476.

